
Citation: Park, S.-S.; Chung, K.-S.

CONNA: Configurable Matrix

Multiplication Engine for Neural

Network Acceleration. Electronics

2022, 11, 2373. https://doi.org/

10.3390/electronics11152373

Academic Editor: Guido Masera

Received: 29 June 2022

Accepted: 27 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CONNA: Configurable Matrix Multiplication Engine for Neural
Network Acceleration
Sang-Soo Park and Ki-Seok Chung *

Department of Electronic Engineering, Hanyang University, Seoul 04736, Korea; po092000@hanyang.ac.kr
* Correspondence: kchung@hanyang.ac.kr; Tel.: +82-02-2220-4701

Abstract: Convolutional neural networks (CNNs) have demonstrated promising results in various
applications such as computer vision, speech recognition, and natural language processing. One
of the key computations in many CNN applications is matrix multiplication, which accounts for
a significant portion of computation. Therefore, hardware accelerators to effectively speed up the
computation of matrix multiplication have been proposed, and several studies have attempted
to design hardware accelerators to perform better matrix multiplications in terms of both speed
and power consumption. Typically, accelerators with either a two-dimensional (2D) systolic array
structure or a single instruction multiple data (SIMD) architecture are effective only when the input
matrix has shapes that are close to or similar to a square. However, several CNN applications
require multiplications of non-squared matrices with various shapes and dimensions, and such
irregular shapes lead to poor utilization efficiency of the processing elements (PEs). This study
proposes a configurable engine for neural network acceleration, called CONNA, whose computation
engine can conduct matrix multiplications with highly utilized computing units, regardless of the
access patterns, shapes, and dimensions of the input matrices by changing the shape of matrix
multiplication conducted in the physical array. To verify the functionality of the CONNA accelerator,
we implemented CONNA as an SoC platform that integrates a RISC-V MCU with CONNA on Xilinx
VC707 FPGA. SqueezeNet on CONNA achieved an inference performance of 100 frames per second
(FPS) with 2.36 mm2 and 83.55 mW in a 65 nm process, improving efficiency by up to 34.1 times
better than existing accelerators in terms of FPS, silicon area, and power consumption.

Keywords: convolutional neural network (CNN); neural processing unit (NPU); matrix multiplica-
tion; various shapes and dimensions

1. Introduction

Convolutional neural networks (CNNs) have emerged as a key technology in several
applications, such as object detection [1–3], image/video classification [4–7], and trans-
lation [8,9], and they generally achieve superior accuracy when compared to humans.
CNN typically consists of computationally intensive convolution layers, which impose
challenges in achieving high-performance and real-time processing [10–12]. In particular,
inference latency is critical when a CNN is employed in safety-critical applications, such as
autonomous driving [13]. In general, graphic processing units (GPUs) are advantageous for
accelerating large amounts of computation through parallel processing [14,15]. However,
they are not capable of achieving low latency [16]. Further, the energy efficiency of GPUs is
poor. Therefore, numerous studies have attempted to design CNN hardware accelerators
with improved low latency and energy efficiency [16–26].

Many of these studies target matrix multiplication to accelerate convolution layers [17–26].
Convolution layers perform element-wise multiplication and additions between input
feature maps and convolution kernels to generate output feature maps. Convolution layers
are generally implemented by lowering three-dimensional tensors to matrix multiplication,

Electronics 2022, 11, 2373. https://doi.org/10.3390/electronics11152373 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152373
https://doi.org/10.3390/electronics11152373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5916-7687
https://doi.org/10.3390/electronics11152373
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152373?type=check_update&version=1

Electronics 2022, 11, 2373 2 of 23

which accounts for more than 70% of the total operations in many CNN applications [11].
Therefore, efficient handling of matrix multiplication is crucial for accelerating CNN.

Recently, state-of-the-art hardware accelerators have employed systolic array struc-
ture or SIMD architecture as the main computing fabric for accelerating matrix multi-
plication [17–22,24–26]. In general, systolic array architecture and SIMD structure are
implemented by interconnecting computing units to form a two-dimensional (2D) array.
Many CNN accelerators employ a systolic array architecture and SIMD structure in which
multiply-accumulate (MAC) operators form a 2D array [17,18,25]. Because the 2D array
commonly has a size of 2N × 2N, the utilization efficiency of the computing units is maxi-
mized when the input is a square matrix [23]. However, computing efficiency degrades
considerably when the shapes of the input matrices are tall or fat [17–19,21–23,25,26]. It
should be noted that many matrices in CNN applications have tall (or fat) shapes for vari-
ous reasons, such as the type of convolution layers (e.g., group, depth-wise, and normal),
type of layers, and weight factorization [23,27,28]. Therefore, it is important to design an
accelerator that can efficiently perform matrix multiplications of various shapes.

In this study, we propose a configurable matrix multiplication engine and a neural
network acceleration method using this engine. We name the proposed hardware accelera-
tor CONNA, which stands for configuring the shape of matrix multiplication conducted
in the physical array following the shape and dimension of the matrix, which is used in
convolution layers in neural networks. In addition, we have introduced a set of application
programming interfaces (APIs) for the proposed accelerator, allowing the accelerator to
be controlled by a processor. We verified that it is possible to effectively accelerate matrix
multiplication of tall (or fat) shape matrices in the system on a chip (SoC) platform in which
the proposed accelerator and RISC-V processor are integrated.

The remainder of this paper is organized as follows: Section 2 explains CNNs and
matrix multiplication in general. In addition, we have discussed some challenges in
implementing CNN accelerators. Section 3 describes the proposed matrix multiplication
engine and the CONNA architecture. Section 4 describes the experimental environment and
results. The CONNA was compared with existing neural accelerators and general-purpose
processors in terms of performance, silicon area, power consumption, and computational
efficiency, and the details are provided in Sections 5 and 6.

Finally, Section 7 concludes the paper.

2. Background and Related Works

In this section, CNNs and matrix multiplications are discussed briefly. We have also
detailed two mainstream neural processing unit (NPU) architectures: single instruction
multiple data (SIMD) and systolic array (SA). Issues in conducting various shapes and
dimensions of matrix multiplication in CNN accelerators are discussed in subsequent sections.

2.1. Convolutional Neural Network

CNN has been adopted to solve many difficult problems, which include computer
vision and natural language processing [1–6]. Most CNNs consist of three different types
of processing layers: convolution layer, pooling layer, and fully connected layer. These
layers are arranged in a feed-forward structure [11]. CNN recognizes an object by feature
extraction and classification. The main function of the convolution and pooling layers is
feature extraction, and that of the fully connected layer is classification.

In the convolution layer, element-wise multiplications are performed between an input
feature map and a convolution kernel. Figure 1 depicts an example of computation in a
convolution layer. First, the input feature map is convolved with a convolution kernel.
In the convolution layer, Cin-channels of Hin × Win input feature map are convolved
with Ck × Ck × Cin kernels by shifting the kernel window to generate one pixel in the
Hout × Wout output feature map. Cout denotes the number of channels in the output feature
map. Second, the sum of weighted results from the first stage and bias is calculated. Finally,
the sum is filtered using an activation function, such as sigmoid, tanh, and ReLU.

Electronics 2022, 11, 2373 3 of 23

Electronics 2022, 11, x FOR PEER REVIEW 3 of 24

output feature map. Cout denotes the number of channels in the output feature map. Sec-
ond, the sum of weighted results from the first stage and bias is calculated. Finally, the
sum is filtered using an activation function, such as sigmoid, tanh, and ReLU.

(a) (b)

Figure 1. Example computation in a convolution layer: (a) Illustration of a convolution operation
between an input feature map and convolution kernel; (b) Pseudocode for a typical computation in
a convolution layer.

Following the execution of the convolution layer, the pooling layer reduces the size
of feature maps. A fully connected layer follows feature extraction using multiple convo-
lutions and pooling layers. The output feature map from the multiple convolutions and
pooling layers represents the high-level features of the input image, and the output of the
fully connected layer is the classification result.

2.2. Matrix Multiplication
Matrix multiplication is a key operation in accelerating CNN applications [12,27–29].

In a CNN, the convolution and fully connected layers area are often implemented with
matrix multiplication. In widely used deep learning frameworks, such as PyTorch and
TensorFlow, the convolution kernel and input feature map are transformed into matrices,
and this transformation process is called packing [27–31]. After the packing is completed,
the output feature map is generated by multiplying the transformed matrices.

For example, image-to-image (im2col) is generally used in the convolution and fully
connected layers [27,28], as shown in Figure 2. The im2col method makes a feature map
into patches of Ck × Ck × Cin, where Ck, and Cin indicate the size and channel of the convo-
lution filter, respectively. The n feature map patches are reshaped into a (Ck × Ck × Cin) × n
matrix before being multiplied by a Cout × (Ck × Ck × Cin) filter matrix to generate a Cout ×
(Hout × Wout) output feature map, where Cout, Hout, Wout, n represent the number of filter type,
the height, width of the output feature map, and the number of feature map patches cor-
respond to the size of the output feature map, respectively.

Figure 1. Example computation in a convolution layer: (a) Illustration of a convolution operation
between an input feature map and convolution kernel; (b) Pseudocode for a typical computation in a
convolution layer.

Following the execution of the convolution layer, the pooling layer reduces the size
of feature maps. A fully connected layer follows feature extraction using multiple convo-
lutions and pooling layers. The output feature map from the multiple convolutions and
pooling layers represents the high-level features of the input image, and the output of the
fully connected layer is the classification result.

2.2. Matrix Multiplication

Matrix multiplication is a key operation in accelerating CNN applications [12,27–29].
In a CNN, the convolution and fully connected layers area are often implemented with
matrix multiplication. In widely used deep learning frameworks, such as PyTorch and
TensorFlow, the convolution kernel and input feature map are transformed into matrices,
and this transformation process is called packing [27–31]. After the packing is completed,
the output feature map is generated by multiplying the transformed matrices.

For example, image-to-image (im2col) is generally used in the convolution and fully
connected layers [27,28], as shown in Figure 2. The im2col method makes a feature map into
patches of Ck × Ck × Cin, where Ck, and Cin indicate the size and channel of the convolution
filter, respectively. The n feature map patches are reshaped into a (Ck × Ck × Cin) × n
matrix before being multiplied by a Cout × (Ck × Ck × Cin) filter matrix to generate a
Cout × (Hout × Wout) output feature map, where Cout, Hout, Wout, n represent the number
of filter type, the height, width of the output feature map, and the number of feature map
patches correspond to the size of the output feature map, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 24

Figure 2. Matrix to matrix multiplication of matrices A (M×K) and B (K×N).

2.3. Accelerating CNN on Neural Processing Unit
The acceleration of CNN becomes pivotal as the computational complexity of CNN

grows rapidly [11,12,14]. Several NPUs have been designed to enhance the computing
performance and energy efficiency of CNNs [17–26]. In such NPUs, when two matrices,
A and B, are multiplied, the first matrix A and the second matrix B are partitioned into
tiles with shapes that fit the hardware accelerator structure, as depicted in Figure 3a. The
tiled matrices of matrix A and matrix B are loaded into buffers (activation/weight buffers
in Figure 3b, c), and multiplication is performed by an array of processing elements (PEs).

(a)

(b) (c)

Figure 3. Matrix multiplication dimension, tiling, and mapping of two types of accelerators: (a) Tiled
matrix on CNN matrix multiplication; (b) Matrix multiplication on SIMD; and (c) Systolic array.

Figure 2. Matrix to matrix multiplication of matrices A (M × K) and B (K × N).

Electronics 2022, 11, 2373 4 of 23

2.3. Accelerating CNN on Neural Processing Unit

The acceleration of CNN becomes pivotal as the computational complexity of CNN
grows rapidly [11,12,14]. Several NPUs have been designed to enhance the computing
performance and energy efficiency of CNNs [17–26]. In such NPUs, when two matrices, A
and B, are multiplied, the first matrix A and the second matrix B are partitioned into tiles
with shapes that fit the hardware accelerator structure, as depicted in Figure 3a. The tiled
matrices of matrix A and matrix B are loaded into buffers (activation/weight buffers in
Figure 3b,c), and multiplication is performed by an array of processing elements (PEs).

Electronics 2022, 11, x FOR PEER REVIEW 4 of 24

Figure 2. Matrix to matrix multiplication of matrices A (M×K) and B (K×N).

2.3. Accelerating CNN on Neural Processing Unit
The acceleration of CNN becomes pivotal as the computational complexity of CNN

grows rapidly [11,12,14]. Several NPUs have been designed to enhance the computing
performance and energy efficiency of CNNs [17–26]. In such NPUs, when two matrices,
A and B, are multiplied, the first matrix A and the second matrix B are partitioned into
tiles with shapes that fit the hardware accelerator structure, as depicted in Figure 3a. The
tiled matrices of matrix A and matrix B are loaded into buffers (activation/weight buffers
in Figure 3b, c), and multiplication is performed by an array of processing elements (PEs).

(a)

(b) (c)

Figure 3. Matrix multiplication dimension, tiling, and mapping of two types of accelerators: (a) Tiled
matrix on CNN matrix multiplication; (b) Matrix multiplication on SIMD; and (c) Systolic array.
Figure 3. Matrix multiplication dimension, tiling, and mapping of two types of accelerators: (a) Tiled
matrix on CNN matrix multiplication; (b) Matrix multiplication on SIMD; and (c) Systolic array.

The SIMD architecture is a hardware unit in which multiple computing units perform a
single operation on different sets of data concurrently [32]. They are widely used in various
commercial processors [33,34]. Several state-of-the-art NPUs employ the SIMD architecture
as their main computation unit [16,19,21,22,24]. In a SIMD-based implementation, each
lane typically performs a dot-product operation [24]. A typical SIMD architecture computes
W dot-product operations in parallel, as illustrated in Figure 3b. To perform W dot-product
operations in parallel, the SIMD requires a dedicated data distribution fabric (i.e., bus, tree,
or mesh) for high-bandwidth data exchange to keep W lanes busy.

The SA architecture is a class of NPU that exploits computational parallelism by utiliz-
ing an array of PEs [17,18,20,25,26]. In SA-based accelerators, there are two conventional
dataflows: weight stationary (WS) and output stationary (OS). In the SA architecture, each
PE typically conducts a MAC operation. In general, matrix multiplication in the SA archi-
tecture is carried out as follows: (1) Data are received from neighboring PEs, as depicted in
Figure 3c. (2) W × H MAC operations are performed simultaneously. (3) The results are
stored in each PE and remain stationary until the final results are computed. This dataflow
is called the OS because the outputs are stored in each PE to minimize the movement cost

Electronics 2022, 11, 2373 5 of 23

of the partial sums. On the other hand, when the weights are pre-loaded into the MAC
array and the activations are marched in from the activation storage buffer, the dataflow
is called WS. In both cases, one element of the output feature map is computed for every
clock cycle for each read input element.

2.4. Handling Various Shapes and Dimensions of Matrix Multiplication in NPU

As mentioned earlier, the transformed feature maps and kernels are computed in the
form of matrix multiplication and various types of matrix multiplications in terms of shapes
and dimensions are carried out in a CNN [23,31]. As listed in Table 1, in the conv1 layer of
SqueezeNet v1.1 [4], the shape of the input feature map is fat-short (N >> K). However, in
fire5/expand 1 × 1 and conv10 layer, the shape of the kernel matrix is tall-skinny (M >> K).
In addition, the input feature maps of conv1 and fire2/squeeze1 × 1 are fat-short, but the
dimensions of conv 1 are significantly larger than those of fire2/squeeze1 × 1.

Table 1. Matrix multiplication parameter in SqueezeNet v1.1 with im2col [4,28].

Layer Type Layer Name *
(Module/Kernel)

Matrix Multiplication Parameter

M N K

Convolution conv1 (3 × 3) 64 12,769 27
Convolution fire2/squeeze1 × 1 16 3136 64
Convolution fire2/expand1 × 1 64 3136 64
Convolution fire2/expand3 × 3 64 3136 576
Convolution fire5/squeeze1 × 1 32 784 256
Convolution fire5/expand1 × 1 128 784 32

Fully connected conv10 1000 196 512
* Common convolution function (3 × 3), squeeze (squeeze1 × 1), and expand (expand1 × 1/3 × 3).

These various shapes and dimensions may decrease the efficiency of matrix multiplica-
tion on both systolic array structure and SIMD architecture [17–19,21–23,25,26]. Most NPU
architectures have an inflexible structure where they are effective only for square matrix
multiplications [16–21]. Therefore, the acceleration performance of a CNN accelerator
may not be consistently good. In this section, the key issues in implementing a CNN
accelerator are discussed from three perspectives: computing unit utilization, latency,
and throughput.

2.4.1. Computing Unit Utilization

Table 2 lists the MAC utilization rates and computing performance achieved when
accelerating SqueezeNet on various NPUs [17–21]. In the case of 3 × 3 convolution layers
(conv1, fire2/expand3 × 3), most NPUs have high MAC utilization on average. However,
in the case of 1 × 1 convolution layers (fire2/squeeze1 × 1 and expand1 × 1), the utilization
rates are considerably lower. In particular, the utilization rates of KOP3, Angle-Eye, and
TPU are less than 10%. Figure 4 depicts the matrix multiplication of convolution layers
on a 32 × 32 PE array in Gemmini. For the 3 × 3 convolution layer, approximately 85%
(=27 × 32/(32 × 32)) of the PEs in Gemmini were utilized. However, for 1 × 1 convolution
layers, only 50% (=32 × 16/(32 × 32)) of the PEs were utilized. The main reasons for the
low utilization are that the dimensions of the transformed tensors are considerably smaller
than those of the PE array on the NPU, and the shape of the transformed tensors and that
of the PE array on the NPU are not identical [17,21,23,24].

Electronics 2022, 11, 2373 6 of 23

Table 2. Acceleration utilization of SqueezeNet v1.1 on NPUs.

Architecture Type Peak
Perf. 1

Utilization (%) 2 Achieved Performance (GOPS)

Conv1 Fire2 (S1, E1, E3) 3 Conv1 Fire2 (S1, E1, E3) 3

KOP3 [21] SIMD 94.8GOPS 98.5 6.8 10.9 88.7 93.38 6.48 10.37 84.24
Angle-Eye [19] SIMD 188GOPS 84.4 8.3 8.3 75 158.68 15.6 15.6 141.0

TPU [17] SA 23TOPS 37.1 4.7 8.9 30.5 8533 1090 2037 7024
Gemmini [18] SA 512GOPS 99.6 49.6 60.6 98.4 509.95 253.95 310.27 503.65
Eyeriss [20] SA 84GOPS 68.6 50.9 61.0 91.4 57.62 42.76 51.24 76.78

1 Theoretical performance (giga/tera-operations per second), 2 ratio of ideal to actual computations, 3 S1/E1/E3
(squeeze1 × 1 and expand1 × 1/3 × 3).

Electronics 2022, 11, x FOR PEER REVIEW 6 of 24

2.4.1. Computing Unit Utilization
Table 2 lists the MAC utilization rates and computing performance achieved when

accelerating SqueezeNet on various NPUs [17–21]. In the case of 3 × 3 convolution layers
(conv1, fire2/expand3 × 3), most NPUs have high MAC utilization on average. However,
in the case of 1 × 1 convolution layers (fire2/squeeze1 × 1 and expand1 × 1), the utilization
rates are considerably lower. In particular, the utilization rates of KOP3, Angle-Eye, and
TPU are less than 10%. Figure 4 depicts the matrix multiplication of convolution layers on
a 32 × 32 PE array in Gemmini. For the 3 × 3 convolution layer, approximately 85% (=27 ×
32/(32 × 32)) of the PEs in Gemmini were utilized. However, for 1 × 1 convolution layers,
only 50% (=32 × 16/(32 × 32)) of the PEs were utilized. The main reasons for the low utili-
zation are that the dimensions of the transformed tensors are considerably smaller than
those of the PE array on the NPU, and the shape of the transformed tensors and that of
the PE array on the NPU are not identical [17,21,23,24].

(a) (b)

Figure 4. Matrix multiplication with 32 × 32 PE array Gemmini: (a) Case of 3 × 3, and (b) 1 × 1 con-
volution layers in SqueezeNet.

Table 2. Acceleration utilization of SqueezeNet v1.1 on NPUs.

Architecture Type
Peak
Perf. 1

Utilization (%) 2 Achieved Performance (GOPS)
Conv1 Fire2 (S1, E1, E3) 3 Conv1 Fire2 (S1, E1, E3) 3

KOP3 [21] SIMD 94.8GOPS 98.5 6.8 10.9 88.7 93.38 6.48 10.37 84.24
Angle-Eye [19] SIMD 188GOPS 84.4 8.3 8.3 75 158.68 15.6 15.6 141.0

TPU [17] SA 23TOPS 37.1 4.7 8.9 30.5 8533 1090 2037 7024
Gemmini [18] SA 512GOPS 99.6 49.6 60.6 98.4 509.95 253.95 310.27 503.65
Eyeriss [20] SA 84GOPS 68.6 50.9 61.0 91.4 57.62 42.76 51.24 76.78

1 Theoretical performance (giga/tera-operations per second), 2 ratio of ideal to actual computations,
3 S1/E1/E3 (squeeze1 × 1 and expand1 × 1/3 × 3).

In previous studies, the following three methods were mainly used to compute the
various shapes and dimensions of matrices in a CNN: zero padding, gating technique,
and reconfigurable hardware [17–21,23,24]. Zero padding is a method that transforms
non-square matrices into square-shaped ones using zero values [35]. Zero padding has
been employed in Angle-Eye, TPU, and Gemmini [17–19]. Although zero padding makes
a squares matrix, certain unnecessary computations are performed; thus, quite a few
meaningless operations such as multiplication by zero will be carried out. Therefore, it
can reduce the utilization of MAC utilization. Gating technique and reconfigurable hard-
ware are methods to increase MAC utilization. Eyeriss and KOP3 employ a clock gating
logic that controls new input loading and avoids unnecessary computation [20,21]. Unlike
zero padding, unnecessary operations are avoided using this gating logic, but overhead
for the control hardware is costly. In reconfigurable hardware, MAC engines with recon-
figurable interconnections allow for the effective computation of matrix multiplication of
various shapes and dimensions [23,24]. It employs switchable adder and multiplier logic
and forwards the data to the selected interconnections according to the shape and dimen-
sion of matrices. However, it requires a large amount of power consumption. More than

Figure 4. Matrix multiplication with 32 × 32 PE array Gemmini: (a) Case of 3 × 3, and
(b) 1 × 1 convolution layers in SqueezeNet.

In previous studies, the following three methods were mainly used to compute the
various shapes and dimensions of matrices in a CNN: zero padding, gating technique,
and reconfigurable hardware [17–21,23,24]. Zero padding is a method that transforms
non-square matrices into square-shaped ones using zero values [35]. Zero padding has
been employed in Angle-Eye, TPU, and Gemmini [17–19]. Although zero padding makes
a squares matrix, certain unnecessary computations are performed; thus, quite a few
meaningless operations such as multiplication by zero will be carried out. Therefore, it can
reduce the utilization of MAC utilization. Gating technique and reconfigurable hardware
are methods to increase MAC utilization. Eyeriss and KOP3 employ a clock gating logic
that controls new input loading and avoids unnecessary computation [20,21]. Unlike zero
padding, unnecessary operations are avoided using this gating logic, but overhead for the
control hardware is costly. In reconfigurable hardware, MAC engines with reconfigurable
interconnections allow for the effective computation of matrix multiplication of various
shapes and dimensions [23,24]. It employs switchable adder and multiplier logic and
forwards the data to the selected interconnections according to the shape and dimension of
matrices. However, it requires a large amount of power consumption. More than 50% of
power is dissipated in switchable logics. In addition, these logics take more than a quarter
of the total silicon area [24].

2.4.2. Latency and Throughput

Figure 5 depicts an example of the computation of a non-square-shaped matrix mul-
tiplication in an SA-based architecture. Before propagating data into a systolic array, the
matrices must be zero-padded so that their dimensions become multiples of the size of the
systolic array [17,18,23]. It requires clock cycles to pad zeros in the input matrix to propagate
from the buffer to each PE. Also, the PEs do not perform meaningful MAC computations
on zero-padded parts, resulting in unnecessary latencies and low throughput [18,23].

Electronics 2022, 11, 2373 7 of 23

Electronics 2022, 11, x FOR PEER REVIEW 7 of 24

50% of power is dissipated in switchable logics. In addition, these logics take more than a
quarter of the total silicon area [24].

2.4.2. Latency and Throughput
Figure 5 depicts an example of the computation of a non-square-shaped matrix mul-

tiplication in an SA-based architecture. Before propagating data into a systolic array, the
matrices must be zero-padded so that their dimensions become multiples of the size of
the systolic array [17,18,23]. It requires clock cycles to pad zeros in the input matrix to
propagate from the buffer to each PE. Also, the PEs do not perform meaningful MAC
computations on zero-padded parts, resulting in unnecessary latencies and low through-
put [18,23].

(a) (b)

Figure 5. Matrix multiplication of conv1 layer in 32 × 32 systolic array: (a) Weight Stationary (WS)
and (b) Output Stationary (OS).

Table 3 lists the number of clock cycles, latency, and throughput of processing a zero-
padded SqueezeNet v1.1 running on Gemmini [18]. First, fire2/squeeze1 × 1 and fire5/ex-
pand1 × 1 underwent the same number of MAC operations. However, the latency of
fire2/squeeze1 × 1 was approximately twice as long as that of fire5/expand1 × 1. In addi-
tion, the throughput was approximately half. Second, while fire5/squeeze1 × 1 required
fewer MAC operations than fire2/expand1 × 1, the latency and throughput were similar.
These large differences in computing performance were also observed in the SIMD-based
accelerators [18,20]. As shown in Table 4, KOP3 exhibited considerable differences in la-
tency and throughput among other convolution layers [21]. In KOP3, the fire2/expand3 ×
3 layer requires more computation than that of fire2/expand1 × 1, but the latency and
throughput are similar. These results imply that NPU architectures cannot consistently
perform matrix multiplication for various shapes and dimensions.

Figure 5. Matrix multiplication of conv1 layer in 32 × 32 systolic array: (a) Weight Stationary (WS)
and (b) Output Stationary (OS).

Table 3 lists the number of clock cycles, latency, and throughput of processing a
zero-padded SqueezeNet v1.1 running on Gemmini [18]. First, fire2/squeeze1 × 1 and
fire5/expand1 × 1 underwent the same number of MAC operations. However, the latency
of fire2/squeeze1 × 1 was approximately twice as long as that of
fire5/expand1 × 1. In addition, the throughput was approximately half. Second, while
fire5/squeeze1 × 1 required fewer MAC operations than fire2/expand1 × 1, the latency
and throughput were similar. These large differences in computing performance were also
observed in the SIMD-based accelerators [18,20]. As shown in Table 4, KOP3 exhibited
considerable differences in latency and throughput among other convolution layers [21]. In
KOP3, the fire2/expand3 × 3 layer requires more computation than that of fire2/expand1
× 1, but the latency and throughput are similar. These results imply that NPU architectures
cannot consistently perform matrix multiplication for various shapes and dimensions.

Table 3. Latency and throughput of 32 × 32 Gemmini (1024 GOPS) running at 500 MHz [18].

Layer # of MAC Clock
Cycles Latency (µs) Throughput (FPS) 1

conv1 (3 × 3) 44.13 M 75,200 150.4 6648.9
fire2/squeeze1 × 1 6.42 M 18,424 36.85 27,137
fire2/expand1 × 1 25.69 M 37,632 75.26 13,287.3
fire2/expand3 × 3 231.21 M 338,688 677.38 1476.3
fire5/squeeze1 × 1 12.85 M 38,400 76.8 13,020.8
fire5/expand1 × 1 6.42 M 9400 18.8 53,191.5
fire5/expand3 × 3 57.8 M 84,600 169.2 5910.2

conv10 (fc) 200.7 M 336,896 673.79 1484.1
1 Number of images per layer that can be computed in the accelerator (Frame per second).

Table 4. Latency and throughput of KOP3 [21].

Layer Conv1 Fire2/Squeeze1 × 1 Fire2/Expand1 × 1 Fire2/Expand3 × 3

of MAC 44.13 M 6.42 M 25.69 M 231.21 M
Latency (ms) 0.95 1.98 4.95 5.49

Throughput (FPS) 1058.01 504.67 201.83 182.17

Electronics 2022, 11, 2373 8 of 23

The main reason for the longer latency and lower throughput is that the zero value is
forwarded and calculated through the connection between connected operators for data
reuse within the accelerator [17,18,21]. Several existing accelerators have attempted to
resolve this issue by connecting adjacent computing units only in a horizontal or vertical
direction, called 1D systolic array [25,26]. The independent 1D systolic array of the acceler-
ator can be mapped into individual rows or columns of a 2D systolic array. This method
improves the latency by reducing unnecessary data forwarding, but the data reusability is
reduced compared to typical SA and requires additional memory and hardware logic to
increase data reuse.

3. CONNA Architecture

This section describes the architecture of CONNA and the computation of a convo-
lution layer on CONNA. CONNA includes special hard circuits for the multiplication
of tall-or-fat matrices by dynamically reconfiguring the matrix form. We have discussed
the advantages of this configurable matrix multiplication engine in terms of MAC uti-
lization, latency, and throughput. We have explained the computation of various matrix
multiplications in a CNN by using this hardware engine.

3.1. Architecture Overview

Figure 6 depicts the hardware structure of the CONNA. It consists of a system bus
interface and a computation engine to multiply tall-or-fat matrices. Through the system bus,
data and control signals are delivered to CONNA, and the result of convolution operations
is stored in external memory. This matrix multiplication engine consists of several compo-
nents for control and memory (I/O control, weight buffer, feature buffer, and accumulation
buffer) and computation (vector lane, vector lane scheduler, activation unit).

Electronics 2022, 11, x FOR PEER REVIEW 9 of 24

Figure 6. Hardware block diagram of CONNA architecture.

I/O control is a hardware interface for controlling the CONNA. CONNA starts its
operation by receiving commands from the host processor. These commands include data
movement operations (e.g., copying data from the external memory to a buffer inside
CONNA) and multiplication operations (e.g., 32 × 8 matrix multiplication). The activation
buffer and weight buffer store a portion of the input feature map and weight of the con-
volution kernel, respectively.

The data for a convolution layer is passed to the component for computation through
a special hardware module that configures the data path to the computational logic de-
pending on the dimension and shape of the input matrices. This special hardware is called
a vector lane scheduler (VL scheduler). This has been detailed in Section 3.2. Vector lanes
(VLs) conduct MAC operations in parallel. Each VL consists of processing elements (PEs)
that multiply the input feature map and weight of the convolution layer and accumulate
the result of multiplication to obtain a partial sum and a register to hold the partial sum.
An activation unit performs activation functions, such as a series of rectifier linear units
(e.g., ReLU and ReLU6). When the output feature map is completed, the result is for-
warded to the accumulation buffer, and the result is eventually stored in the external
memory.

3.2. Proposed Configurable Matrix Engine
As mentioned in Section 2.4, the acceleration of multiplications of tall-and-fat matri-

ces on CNN accelerators is inefficient in most of the existing PE arrays [17–19,21–23,25,26].
Therefore, it is important to find a way to accelerate matrix multiplication regardless of
the shapes and dimensions of the matrices.

The CONNA includes a special hardware module that realizes the configuration of
the data path between the buffer and computation unit using multiplexers (MUXs). Figure
7 depicts the architecture of the VL scheduler and interconnections between the VL
scheduler and VLs for multiplications of 8 activations and 32 weights. It consists of a reg-
ister called mode control, a module called activation scheduler (actSH), and four mod-
ules called weight schedulers (wSH1~4). Mode control generates the selection signals
(aMode, wMode) of multiplexers in actSH and wSH1~4 to select the shape and dimension
of matrix multiplication that can be computed in the CONNA.

Figure 6. Hardware block diagram of CONNA architecture.

I/O control is a hardware interface for controlling the CONNA. CONNA starts its
operation by receiving commands from the host processor. These commands include data
movement operations (e.g., copying data from the external memory to a buffer inside
CONNA) and multiplication operations (e.g., 32 × 8 matrix multiplication). The activation
buffer and weight buffer store a portion of the input feature map and weight of the
convolution kernel, respectively.

The data for a convolution layer is passed to the component for computation through
a special hardware module that configures the data path to the computational logic de-
pending on the dimension and shape of the input matrices. This special hardware is called
a vector lane scheduler (VL scheduler). This has been detailed in Section 3.2. Vector lanes
(VLs) conduct MAC operations in parallel. Each VL consists of processing elements (PEs)
that multiply the input feature map and weight of the convolution layer and accumulate
the result of multiplication to obtain a partial sum and a register to hold the partial sum.
An activation unit performs activation functions, such as a series of rectifier linear units

Electronics 2022, 11, 2373 9 of 23

(e.g., ReLU and ReLU6). When the output feature map is completed, the result is forwarded
to the accumulation buffer, and the result is eventually stored in the external memory.

3.2. Proposed Configurable Matrix Engine

As mentioned in Section 2.4, the acceleration of multiplications of tall-and-fat matrices
on CNN accelerators is inefficient in most of the existing PE arrays [17–19,21–23,25,26].
Therefore, it is important to find a way to accelerate matrix multiplication regardless of the
shapes and dimensions of the matrices.

The CONNA includes a special hardware module that realizes the configuration
of the data path between the buffer and computation unit using multiplexers (MUXs).
Figure 7 depicts the architecture of the VL scheduler and interconnections between the
VL scheduler and VLs for multiplications of 8 activations and 32 weights. It consists of
a register called mode control, a module called activation scheduler (actSH), and four
modules called weight schedulers (wSH1~4). Mode control generates the selection signals
(aMode, wMode) of multiplexers in actSH and wSH1~4 to select the shape and dimension
of matrix multiplication that can be computed in the CONNA.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 24

Figure 7. Architecture of the VL scheduler for multiplications of 8 activations and 32 weights.

The data path is divided into two parts: the path from the activation and weight buff-
ers to the VL scheduler (A1~16 and W1~64) and thereafter to VLs (aCH1~2 and wCH1~32). The
activation values and weights to be used for multiplication were selectively delivered to
the VL scheduler through actSH and wSH1~4, respectively. This selection logic circuit real-
izes matrix multiplications of various shapes and dimensions efficiently in the CONNA
architecture. The VL scheduler, which consists of 32 weight channels (wCH1~32) and 2 ac-
tivation channels (aCH1~2), was connected to 32 VLs. The activation values were distrib-
uted into 2 channels (aCH1~2), which means that 16 VLs share the same activation value,
and the weight values were passed to the VLs through 32 channels (wCH1~32), which
means that each VL has its own weight. VLs performed the matrix multiplication of acti-
vation values and weights in parallel.

Figure 8 depicts an 8 × 32 matrix multiplication of 8 × N activations and N × 32 weights
in CONNA, where N represents the number of columns in the activation matrix and the
number of rows in the weight matrix. Matrix multiplication is conducted as the sum of
the outer products of the columns of activations and rows of weights, as depicted in Figure
8a. An 8 × 32 matrix multiplication was performed in the CONNA architecture as follows:
The activation scheduler (actSH) selected A1~8 and the weight schedulers (wCH1~4) selected
W1~32, and the selected values were delivered to 32 VLs. The activation channel aCH1 de-
livered 8 activations (A1~8) to 16 VLs, and the other activation channel aCH2 carried A1~8 to
the other 16 VLs. Then, 32 weights (W1~32) were propagated to 32 VLs, which means that
each VL had its own weight (e.g., VL1 to W1). As depicted in Figure 8b, each VL multiplied
A1~8 by the assigned weight to generate values in the corresponding column of the output
matrix. The results were stored in a register in the VL. After completing the multiplication
of A1~8 and W1~32, the multiplication of the next pair of the column of activations (A9~16) and
row of weights (W33~64) proceeded, and the results were accumulated in a register in each
VL. These computations were repeated until the operations of all pairs of columns of ac-
tivations and rows of weights were completed. The accumulated result was stored in an
accumulation buffer through the activation unit, as depicted in Figure 6.

Figure 7. Architecture of the VL scheduler for multiplications of 8 activations and 32 weights.

The data path is divided into two parts: the path from the activation and weight
buffers to the VL scheduler (A1~16 and W1~64) and thereafter to VLs (aCH1~2 and wCH1~32).
The activation values and weights to be used for multiplication were selectively delivered
to the VL scheduler through actSH and wSH1~4, respectively. This selection logic circuit
realizes matrix multiplications of various shapes and dimensions efficiently in the CONNA
architecture. The VL scheduler, which consists of 32 weight channels (wCH1~32) and
2 activation channels (aCH1~2), was connected to 32 VLs. The activation values were
distributed into 2 channels (aCH1~2), which means that 16 VLs share the same activation
value, and the weight values were passed to the VLs through 32 channels (wCH1~32),
which means that each VL has its own weight. VLs performed the matrix multiplication of
activation values and weights in parallel.

Figure 8 depicts an 8 × 32 matrix multiplication of 8 × N activations and N × 32
weights in CONNA, where N represents the number of columns in the activation matrix
and the number of rows in the weight matrix. Matrix multiplication is conducted as the
sum of the outer products of the columns of activations and rows of weights, as depicted
in Figure 8a. An 8 × 32 matrix multiplication was performed in the CONNA architecture
as follows: The activation scheduler (actSH) selected A1~8 and the weight schedulers
(wCH1~4) selected W1~32, and the selected values were delivered to 32 VLs. The activation
channel aCH1 delivered 8 activations (A1~8) to 16 VLs, and the other activation channel

Electronics 2022, 11, 2373 10 of 23

aCH2 carried A1~8 to the other 16 VLs. Then, 32 weights (W1~32) were propagated to
32 VLs, which means that each VL had its own weight (e.g., VL1 to W1). As depicted
in Figure 8b, each VL multiplied A1~8 by the assigned weight to generate values in the
corresponding column of the output matrix. The results were stored in a register in the
VL. After completing the multiplication of A1~8 and W1~32, the multiplication of the next
pair of the column of activations (A9~16) and row of weights (W33~64) proceeded, and the
results were accumulated in a register in each VL. These computations were repeated until
the operations of all pairs of columns of activations and rows of weights were completed.
The accumulated result was stored in an accumulation buffer through the activation unit,
as depicted in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 24

(a) (b)

Figure 8. Example of matrix multiplication between 8 × N activations and N × 32 weights inside
CONNA: (a) 8 × 32 matrix multiplication and (b) matrix multiplication conducted in CONNA.

The CONNA conducted matrix multiplication of various shapes and dimensions, as
well as 8 × 32 matrix multiplication. This architecture sets the shape and dimension of
matrix multiplication by configuring the data path. Table 5 lists the forms of matrix mul-
tiplications that can be performed using the CONNA. This setting is called operation
mode. In each operation mode, the CONNA multiplied tm × N activations by N × tn weights
and generated a tm × tn matrix, where tm and tn indicate the size of a row in the activation
matrix and that of a column in the weight matrix, respectively. For instance, in operation
mode 1, it conducts a matrix multiplication of 16 × N activations and N × 16 weights, and
a 16 × 16 result matrix will be generated.

Table 5. Operation modes of CONNA.

Mode (tm × tn) Activation (tm × N) Weight (N × tn)
1 (16 × 16) 16 × N N × 16
2 (8 × 32) 8 × N N × 32
3 (4 × 64) 4 × N N × 64
4 (64 × 4) 64 × N N × 4
5 (32 × 8) 32 × N N × 8

Mode 4/5 can be computed by swapping the data paths of buffers and operators in Mode 2/3.

3.3. Convolution Operation inside CONNA
This section details the convolution operation mentioned in Section 3.2. The main

goal of the CONNA is to maximize the utilization of computational units to improve la-
tency and throughput. The efficiency of a neural network accelerator decreases signifi-
cantly when the structure of the PE array does not match the shape and dimension of the
required matrix multiplication. That is, the efficiency depends on the shape of the tensor.
The CONNA employed a configurable computational engine to address this problem.

Figure 9 depicts the pseudocodes of the convolution operation conducted in the
CONNA. The tensor of a CNN was transformed into a matrix so that it could be computed
via matrix multiplication, which is conducted with tiling in the CONNA. Once a feature
map of dimension (M × K) and a weight matrix of the convolution kernel of dimension (K
× N) are loaded into the buffers, these matrices are tiled into the shape of tm × K and K × tn
matrices, respectively, as depicted in Figure 10a, where tm refers to the number of convo-
lution windows (e.g., A1 and A2) in a feature map and tn indicates the number of types of
convolution kernels used for the convolution operation. The convolution operation with
tm activations and tn convolution kernels is depicted in Figure 10b.

Figure 8. Example of matrix multiplication between 8 × N activations and N × 32 weights inside
CONNA: (a) 8 × 32 matrix multiplication and (b) matrix multiplication conducted in CONNA.

The CONNA conducted matrix multiplication of various shapes and dimensions,
as well as 8 × 32 matrix multiplication. This architecture sets the shape and dimension
of matrix multiplication by configuring the data path. Table 5 lists the forms of matrix
multiplications that can be performed using the CONNA. This setting is called operation
mode. In each operation mode, the CONNA multiplied tm × N activations by N × tn
weights and generated a tm × tn matrix, where tm and tn indicate the size of a row in the
activation matrix and that of a column in the weight matrix, respectively. For instance, in
operation mode 1, it conducts a matrix multiplication of 16 × N activations and N × 16
weights, and a 16 × 16 result matrix will be generated.

Table 5. Operation modes of CONNA.

Mode (tm × tn) Activation (tm × N) Weight (N × tn)

1 (16 × 16) 16 × N N × 16
2 (8 × 32) 8 × N N × 32
3 (4 × 64) 4 × N N × 64
4 (64 × 4) 64 × N N × 4
5 (32 × 8) 32 × N N × 8

Mode 4/5 can be computed by swapping the data paths of buffers and operators in Mode 2/3.

3.3. Convolution Operation inside CONNA

This section details the convolution operation mentioned in Section 3.2. The main goal
of the CONNA is to maximize the utilization of computational units to improve latency and
throughput. The efficiency of a neural network accelerator decreases significantly when the
structure of the PE array does not match the shape and dimension of the required matrix
multiplication. That is, the efficiency depends on the shape of the tensor. The CONNA
employed a configurable computational engine to address this problem.

Electronics 2022, 11, 2373 11 of 23

Figure 9 depicts the pseudocodes of the convolution operation conducted in the
CONNA. The tensor of a CNN was transformed into a matrix so that it could be computed
via matrix multiplication, which is conducted with tiling in the CONNA. Once a feature
map of dimension (M × K) and a weight matrix of the convolution kernel of dimension
(K × N) are loaded into the buffers, these matrices are tiled into the shape of tm × K and
K × tn matrices, respectively, as depicted in Figure 10a, where tm refers to the number of
convolution windows (e.g., A1 and A2) in a feature map and tn indicates the number of
types of convolution kernels used for the convolution operation. The convolution operation
with tm activations and tn convolution kernels is depicted in Figure 10b.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 24

Figure 9. Pseudocodes of convolution operations in a convolution layer.

(a)

(b)

Figure 10. Convolution operation inside CONNA architecture: (a) Illustration of a convolution op-
eration using matrix multiplication; (b) Convolution operation with tm activations and tn convolu-
tion kernels.

Figure 11 depicts the execution flow of the CONNA. The execution flow is pipelined
into the following five stages: (1) Loading activations/weights from a buffer to VL; (2–3)
Performing multiplication and addition (MUL and ADD) in VL; (4) Activation to gener-
ate an output feature map; and (5) Storing the result in the accumulation buffer. During
the loading stage, the activations and weights stored in the buffer are transferred to each
VL with the data path set according to the operation mode. In this step, a set of data is
continuously fetched and transferred to VLs in every cycle. For example, the first tm

Figure 9. Pseudocodes of convolution operations in a convolution layer.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 24

Figure 9. Pseudocodes of convolution operations in a convolution layer.

(a)

(b)

Figure 10. Convolution operation inside CONNA architecture: (a) Illustration of a convolution op-
eration using matrix multiplication; (b) Convolution operation with tm activations and tn convolu-
tion kernels.

Figure 11 depicts the execution flow of the CONNA. The execution flow is pipelined
into the following five stages: (1) Loading activations/weights from a buffer to VL; (2–3)
Performing multiplication and addition (MUL and ADD) in VL; (4) Activation to gener-
ate an output feature map; and (5) Storing the result in the accumulation buffer. During
the loading stage, the activations and weights stored in the buffer are transferred to each
VL with the data path set according to the operation mode. In this step, a set of data is
continuously fetched and transferred to VLs in every cycle. For example, the first tm

Figure 10. Convolution operation inside CONNA architecture: (a) Illustration of a convolution operation
using matrix multiplication; (b) Convolution operation with tm activations and tn convolution kernels.

Electronics 2022, 11, 2373 12 of 23

Figure 11 depicts the execution flow of the CONNA. The execution flow is pipelined
into the following five stages: (1) Loading activations/weights from a buffer to VL; (2–3)
Performing multiplication and addition (MUL and ADD) in VL; (4) Activation to generate
an output feature map; and (5) Storing the result in the accumulation buffer. During
the loading stage, the activations and weights stored in the buffer are transferred to each
VL with the data path set according to the operation mode. In this step, a set of data
is continuously fetched and transferred to VLs in every cycle. For example, the first tm
activations (A1(1)~Atm(1)) and tn weights (W1(1)~Wtn(1)) are fetched and transferred to VLs
at clock cycle t1. The second set of values, A1(2)~Atm(2) and W1(2)~Wtn(2), are fetched at
t2, as depicted in Figure 11. In the computation stage, matrix multiplication is performed,
and partial sums are generated by accumulating the values. Eventually, after obtaining the
output feature map through the activation operation (Activation), the result is stored in the
accumulation buffer (Store).

Electronics 2022, 11, x FOR PEER REVIEW 13 of 24

activations (A1(1)~Atm(1)) and tn weights (W1(1)~Wtn(1)) are fetched and transferred to VLs at
clock cycle t1. The second set of values, A1(2)~Atm(2) and W1(2)~Wtn(2), are fetched at t2, as
depicted in Figure 11. In the computation stage, matrix multiplication is performed, and
partial sums are generated by accumulating the values. Eventually, after obtaining the
output feature map through the activation operation (Activation), the result is stored in
the accumulation buffer (Store).

Figure 11. Illustration of the five-stage pipelined execution in CONNA: Load, two stages for com-
putation, activation, and store.

4. Hardware Implementation
4.1. CONNA Implmentation

The hardware design of CONNA was implemented using the Chisel language [36].
A chisel is a hardware description language that directly generates synthesizable RTL
Verilog HDL codes. The CONNA hardware implementation was verified using a Xilinx
FPGA VC707. We integrated the CONNA with a RISC-V microcontroller unit (MCU) [37].
The details of the hardware configuration and SoC platform are discussed in Section 4.2.
After the functionality was verified, the hardware design was synthesized using Synopsys
Design Compiler Ultra with Samsung 65 nm LP libraries under the worst-case operating
conditions (1.08 V, 125 °C). The energy dissipation of CONNA was estimated using the
Synopsys Power Compiler. In addition, CACTI v7.0 was used to estimate the amount of
SRAM power consumption and area using the Samsung 65 nm technology [38]. Each
SRAM was organized into 4 banks with a 128-bit data width. The area and power con-
sumption of a 172 KB SRAM were 1.92 mm2 and 75.256 mW, respectively.

For comparison, we implemented the RTL designs of OS and WS SAs and SIMDs (16
× 16, 32 × 8/8 × 32, 64 × 4/4 × 64), including 8-bit multipliers and 32-bit adders. We set the
operating frequency at 200 MHz to satisfy the timing constraints. The results are summa-
rized in Table 6. Figure 12 depicts the hardware cost for each accelerator. The circuit area
and power consumption of the multipliers were compared to each other. However, the
costs of other parts were different from one another.

Figure 11. Illustration of the five-stage pipelined execution in CONNA: Load, two stages for compu-
tation, activation, and store.

4. Hardware Implementation
4.1. CONNA Implmentation

The hardware design of CONNA was implemented using the Chisel language [36]. A
chisel is a hardware description language that directly generates synthesizable RTL Verilog
HDL codes. The CONNA hardware implementation was verified using a Xilinx FPGA
VC707. We integrated the CONNA with a RISC-V microcontroller unit (MCU) [37]. The
details of the hardware configuration and SoC platform are discussed in Section 4.2. After
the functionality was verified, the hardware design was synthesized using Synopsys Design
Compiler Ultra with Samsung 65 nm LP libraries under the worst-case operating conditions
(1.08 V, 125 ◦C). The energy dissipation of CONNA was estimated using the Synopsys
Power Compiler. In addition, CACTI v7.0 was used to estimate the amount of SRAM
power consumption and area using the Samsung 65 nm technology [38]. Each SRAM was
organized into 4 banks with a 128-bit data width. The area and power consumption of a
172 KB SRAM were 1.92 mm2 and 75.256 mW, respectively.

For comparison, we implemented the RTL designs of OS and WS SAs and SIMDs
(16 × 16, 32 × 8/8 × 32, 64 × 4/4 × 64), including 8-bit multipliers and 32-bit adders. We
set the operating frequency at 200 MHz to satisfy the timing constraints. The results are
summarized in Table 6. Figure 12 depicts the hardware cost for each accelerator. The circuit
area and power consumption of the multipliers were compared to each other. However,
the costs of other parts were different from one another.

Electronics 2022, 11, 2373 13 of 23

Table 6. Summary of implementation evaluation on three types of neural network accelerators.

Metric
Systolic Array (SA) Single Instruction Multiple Data (SIMD)

CONNA
OS WS 16 × 16 32 × 8 8 × 32 64 × 4 4 × 64

MUL/ADD 256/256 256/256 256/240 256/224 256/248 256/192 256/252 256/256
Local Memory 1 12,288 b 12,160 b 2688 b 3200 b 2432 b 4224 b 2304 b 8192 b

Peak GOPS 102.4 102.4 99.2 96.0 100.8 89.6 101.6 102.4
Real GOPS 2 52.37 59.77 75.54 64.76 69.03 50.51 69.58 84.88
Area (mm2) 2.334 2.312 2.303 2.304 2.308 2.304 2.304 2.344
Power (mW) 83.81 83.73 82.85 82.78 82.92 82.65 82.92 83.55

Efficiency (TOPS/W) 3 624.9 713.8 911.8 782.3 832.5 611.1 839.1 1015.9
1 Size of register, 2 Inference of SqueezeNet v1.1, 3 Real GOPS per Power consumption.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 24

(a) (b)

Figure 12. Detailed hardware implementation cost of each accelerator excluding the SRAM: (a) sili-
con area (μm2); (b) power consumption (mW).

Table 6. Summary of implementation evaluation on three types of neural network accelerators.

Metric
Systolic Array (SA) Single Instruction Multiple Data (SIMD)

CONNA
OS WS 16 × 16 32 × 8 8 × 32 64 × 4 4 × 64

MUL/ADD 256/256 256/256 256/240 256/224 256/248 256/192 256/252 256/256
Local Memory 1 12,288 b 12,160 b 2688 b 3200 b 2432 b 4224 b 2304 b 8192 b

Peak GOPS 102.4 102.4 99.2 96.0 100.8 89.6 101.6 102.4
Real GOPS 2 52.37 59.77 75.54 64.76 69.03 50.51 69.58 84.88
Area (mm2) 2.334 2.312 2.303 2.304 2.308 2.304 2.304 2.344

Power (mW) 83.81 83.73 82.85 82.78 82.92 82.65 82.92 83.55
Efficiency (TOPS/W) 3 624.9 713.8 911.8 782.3 832.5 611.1 839.1 1015.9

1 Size of register, 2 Inference of SqueezeNet v1.1, 3 Real GOPS per Power consumption.

The hardware costs were analyzed in more detail. First, except for SIMDs, the adders
for other accelerators had comparable areas and power consumption. In SIMD-based ac-
celerators, the number of lanes and elements combined in each lane affected the area and
power consumption of the adders. It is also one of the factors that determine the required
memory size in SIMD-based accelerators. For memory, SA accelerators require a large
memory size when compared to SIMDs and CONNA accelerators. Because each PE in SA
should hold activations, weights, and partial sums, it requires a large memory size. The
hardware cost to implement auxiliary blocks for SIMDs (e.g., broadcasting hardware from
local memory to PEs) depended on the type of SIMD. The CONNA utilized a slightly
larger silicon area than the other compared designs. The larger silicon area was due to the
circuit size of the VL Scheduler. To achieve high utilization of computation units, the VL
Scheduler configures the data path between the SRAM and VLs. However, the area and
power overhead were negligible (0.4% and 0.23% of the total silicon area and power con-
sumption, respectively). The achieved computing performance of the CONNA was up to
1.68 times faster than that of other accelerators by raising the utilization rate. In addition,
the efficiency is 1.66 times more effective than that of other accelerators. The details of the
hardware performance are discussed in Section 5.

4.2. Integration of CONNA and RISC-V MCU
To configure the operation of the CONNA to deal with various shapes and dimen-

sions of matrix multiplication, the proposed CONNA accelerator was integrated with a
RISC-V-based Rocket SoC [37]. In the Rocket SoC, a RISC-V core called Rocket adopts the
RV64G RISC-V instruction set architecture (ISA) with a single-issue five-stage pipeline.
The Rocket SoC included hardware components such as a processor core, an L2 cache, an
external interface (TileLink), and a co-processor called the Rocket custom co-processor
(RoCC) [39]. Because the CONNA was implemented as a RoCC, the RISC-V core and

Figure 12. Detailed hardware implementation cost of each accelerator excluding the SRAM: (a) silicon
area (µm2); (b) power consumption (mW).

The hardware costs were analyzed in more detail. First, except for SIMDs, the adders
for other accelerators had comparable areas and power consumption. In SIMD-based
accelerators, the number of lanes and elements combined in each lane affected the area and
power consumption of the adders. It is also one of the factors that determine the required
memory size in SIMD-based accelerators. For memory, SA accelerators require a large
memory size when compared to SIMDs and CONNA accelerators. Because each PE in
SA should hold activations, weights, and partial sums, it requires a large memory size.
The hardware cost to implement auxiliary blocks for SIMDs (e.g., broadcasting hardware
from local memory to PEs) depended on the type of SIMD. The CONNA utilized a slightly
larger silicon area than the other compared designs. The larger silicon area was due to
the circuit size of the VL Scheduler. To achieve high utilization of computation units, the
VL Scheduler configures the data path between the SRAM and VLs. However, the area
and power overhead were negligible (0.4% and 0.23% of the total silicon area and power
consumption, respectively). The achieved computing performance of the CONNA was up
to 1.68 times faster than that of other accelerators by raising the utilization rate. In addition,
the efficiency is 1.66 times more effective than that of other accelerators. The details of the
hardware performance are discussed in Section 5.

4.2. Integration of CONNA and RISC-V MCU

To configure the operation of the CONNA to deal with various shapes and dimensions
of matrix multiplication, the proposed CONNA accelerator was integrated with a RISC-
V-based Rocket SoC [37]. In the Rocket SoC, a RISC-V core called Rocket adopts the
RV64G RISC-V instruction set architecture (ISA) with a single-issue five-stage pipeline.
The Rocket SoC included hardware components such as a processor core, an L2 cache,
an external interface (TileLink), and a co-processor called the Rocket custom co-processor
(RoCC) [39]. Because the CONNA was implemented as a RoCC, the RISC-V core and
CONNA communicated with each other through the TileLink interface, which enabled the

Electronics 2022, 11, 2373 14 of 23

host core to send a stream of instructions and data to the CONNA, as depicted in Figure 13.
The RoCC interface also enabled the accelerator to be integrated into a cache coherent
TileLink memory system. The core of the CONNA SoC was the same as the SiFive U54
standard core, which had a 128 KB L2 cache, a 16 KiB 4-way set-associative instruction L1
cache, and a data L1 cache of the same structure. [40].

Electronics 2022, 11, x FOR PEER REVIEW 15 of 24

CONNA communicated with each other through the TileLink interface, which enabled
the host core to send a stream of instructions and data to the CONNA, as depicted in
Figure 13. The RoCC interface also enabled the accelerator to be integrated into a cache
coherent TileLink memory system. The core of the CONNA SoC was the same as the Si-
Five U54 standard core, which had a 128 KB L2 cache, a 16 KiB 4-way set-associative in-
struction L1 cache, and a data L1 cache of the same structure. [40].

Figure 13. Block diagram of CONNA SoC.

The CONNA was controlled using the RISC-V core. The operation mode of the
CONNA was configured via a stream of custom RISC-V instructions from the host core
to the CONNA accelerator. It was controlled by a mixture of the extended RISC-V and
RoCC instruction sets. The instructions designed for the CONNA are listed in Table 7.
There are seven instructions of three different types: data movement, computation, and
configuration.

Table 7. Extended instructions for CONNA.

Instruction Instruction Type Description
VLOAD Data movement Copy data from DRAM to CONNA
VSTORE Data movement Copy data from CONNA to DRAM

COMPUTE_MAT Computation Matrix multiplication
COMPUTE_ACT Computation Activation function

SET_MAT Configuration Set the matrix parameter
SET_TMAT Configuration Set the tiled matrix parameter
SET_ACT Configuration Set the activation function (ReLU/ReLU6)

Two instructions, VLOAD and VSTORE, were added for the data movement. These
instructions use the direct memory access (DMA) hardware unit of the CONNA to copy
the feature map and convolution weight from the main memory to the CONNA’s local
memory space, such as the weight buffer, activation buffer, and accumulation buffer.
Once matrices have been brought in from the main memory, the CONNA executes the
computation instructions that can be configured according to the operation mode. The
COMPUTE_MAT instruction conducts the matrix multiplication of activations and
weights and generates an output matrix that stores the result in the accumulation buffer.
After the matrix multiplication, the COMPUTE_ACT instruction performs an activation
function. SET_MAT is an instruction to set the matrix parameter, and SET_TMAT is an
instruction to set the parameters for the matrix tiling. The SET_ACT instruction is an in-
struction to configure the type of the activation function. To make the CONNA accelerator
user-friendly, these instructions were wrapped in a C language in-line assembly.

Figure 14 lists the examples of pseudocodes of the matrix multiplication in the
CONNA. First, the matrix and the tiled matrix parameters are configured
(SET_MAT/SET_TMAT). This allows the PE array to be configured to fit the matrix

Figure 13. Block diagram of CONNA SoC.

The CONNA was controlled using the RISC-V core. The operation mode of the
CONNA was configured via a stream of custom RISC-V instructions from the host core to
the CONNA accelerator. It was controlled by a mixture of the extended RISC-V and RoCC
instruction sets. The instructions designed for the CONNA are listed in Table 7. There are
seven instructions of three different types: data movement, computation, and configuration.

Table 7. Extended instructions for CONNA.

Instruction Instruction Type Description

VLOAD Data movement Copy data from DRAM to CONNA
VSTORE Data movement Copy data from CONNA to DRAM

COMPUTE_MAT Computation Matrix multiplication
COMPUTE_ACT Computation Activation function

SET_MAT Configuration Set the matrix parameter
SET_TMAT Configuration Set the tiled matrix parameter

SET_ACT Configuration Set the activation function
(ReLU/ReLU6)

Two instructions, VLOAD and VSTORE, were added for the data movement. These
instructions use the direct memory access (DMA) hardware unit of the CONNA to copy
the feature map and convolution weight from the main memory to the CONNA’s local
memory space, such as the weight buffer, activation buffer, and accumulation buffer.
Once matrices have been brought in from the main memory, the CONNA executes the
computation instructions that can be configured according to the operation mode. The
COMPUTE_MAT instruction conducts the matrix multiplication of activations and weights
and generates an output matrix that stores the result in the accumulation buffer. After the
matrix multiplication, the COMPUTE_ACT instruction performs an activation function.
SET_MAT is an instruction to set the matrix parameter, and SET_TMAT is an instruction
to set the parameters for the matrix tiling. The SET_ACT instruction is an instruction to
configure the type of the activation function. To make the CONNA accelerator user-friendly,
these instructions were wrapped in a C language in-line assembly.

Figure 14 lists the examples of pseudocodes of the matrix multiplication in the CONNA.
First, the matrix and the tiled matrix parameters are configured (SET_MAT/SET_TMAT).
This allows the PE array to be configured to fit the matrix multiplication of tm × tn. Also,
the SET_ACT instruction sets the type of the activation function. After completing the
configuration, the data is copied from DRAM to the buffer inside the CONNA, and matrix

Electronics 2022, 11, 2373 15 of 23

multiplication is performed using the VLOAD and COMPUTE_MAT, respectively. Finally,
the data stored in the accumulation buffer is copied to the DRAM through the activation
function (COMPUTE_ACT and VSTORE).

Electronics 2022, 11, x FOR PEER REVIEW 16 of 24

multiplication of tm × tn. Also, the SET_ACT instruction sets the type of the activation func-
tion. After completing the configuration, the data is copied from DRAM to the buffer in-
side the CONNA, and matrix multiplication is performed using the VLOAD and COM-
PUTE_MAT, respectively. Finally, the data stored in the accumulation buffer is copied to
the DRAM through the activation function (COMPUTE_ACT and VSTORE).

Figure 14. Pseudocode of the convolution layer with CONNA instructions.

5. Evaluation
Because the neural network accelerators are significantly different from one another,

it is difficult to compare the performance of the CONNA with that of the other accelera-
tors. Also, neural networks are characterized by various features, such as architecture
style, amount of computation, and arithmetic precision. In CONNA, a small CNN model,
SqueezeNet v1.1 [4], with various shapes and dimensions of matrices, was used as a
benchmark. Table 8 lists the structural information, such as tensors and matrix shapes. To
evaluate the performance of CONNA, we compare CNN accelerators by considering two
cases: the number of PE is fixed and the state-of-the-art accelerators. For a fair compari-
son of performance, the number of PEs in all accelerators was fixed at 256. CNN accelera-
tors, namely SIMD and SA, were implemented and compared, representing the state-of-
the-art accelerators [17,18,21]. Also, we discuss the CONNA accelerator in comparison to
the SIMD/SA-based accelerator with different numbers and shapes of PE arrays.

Figure 14. Pseudocode of the convolution layer with CONNA instructions.

5. Evaluation

Because the neural network accelerators are significantly different from one another,
it is difficult to compare the performance of the CONNA with that of the other acceler-
ators. Also, neural networks are characterized by various features, such as architecture
style, amount of computation, and arithmetic precision. In CONNA, a small CNN model,
SqueezeNet v1.1 [4], with various shapes and dimensions of matrices, was used as a bench-
mark. Table 8 lists the structural information, such as tensors and matrix shapes. To evaluate
the performance of CONNA, we compare CNN accelerators by considering two cases:
the number of PE is fixed and the state-of-the-art accelerators. For a fair comparison of
performance, the number of PEs in all accelerators was fixed at 256. CNN accelerators,
namely SIMD and SA, were implemented and compared, representing the state-of-the-art
accelerators [17,18,21]. Also, we discuss the CONNA accelerator in comparison to the
SIMD/SA-based accelerator with different numbers and shapes of PE arrays.

Electronics 2022, 11, 2373 16 of 23

Table 8. Computation of SqueezeNet v1.1 [4] by matrix multiplication.

Layer Filter Shape
(S1/E1/E3) 1

Input Size
(W × H × Cin)

of OPS
(Mega)

Matrix Multiplication Parameter 2

M N K

conv1 3 × 3 × 3 × 64 227 × 227 × 3 44.13 64 12,769 27
fire2 16/64/64 57 × 57 × 64 6.7/6.7/59.9 16/64/64 3249 64/16/144
fire3 16/64/64 57 × 57 × 128 13.3/6.7/59.9 16/64/64 3249 128/16/144
fire4 32/128/128 29 × 29 × 256 6.9/6.9/62 32/128/128 841 128/32/288
fire5 32/128/128 29 × 29 × 256 13.8/6.9/62 32/128/128 841 256/32/288
fire6 48/192/192 15 × 15 × 384 5.5/4.1/37.3 48/192/192 225 256/48/432
fire7 48/192/192 15 × 15 × 384 8.3/4.1/37.3 48/192/19 225 384/48/432
fire8 64/256/256 15 × 15 × 512 11.1/7.4/66.4 64/256/256 225 384/64/576
fire9 64/256/256 15 × 15 × 512 14.7/7.4/68.7 64/256/256 225 512/64/576

conv10 1 × 1 × 512 × 1000 15 × 15 × 512 230.4 1000 225 512

Total 850.06
1 S1/E1/E3 (squeeze1 × 1 and expand1 × 1/3 × 3), 2 M and N are reversed in CONNA.

In this section, computing performance is discussed in terms of computing unit
utilization, latency, and throughput. Next, we compare CONNA with state-of-the-art
accelerators in terms of performance, throughput, and efficiency.

5.1. Computing Unit Utilization of CONNA

Figure 15 depicts the per-layer PE utilization of SqueezeNet v1.1 on all the accelerator
architectures that were compared (SIMD, OS/WS SA, and CONNA). First, the utilization
rate of the CONNA was up to four times higher than that of SIMD.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 24

Table 8. Computation of SqueezeNet v1.1 [4] by matrix multiplication.

Layer
Filter Shape
(S1/E1/E3) 1

Input Size
(W×H×Cin)

of OPS
(Mega)

Matrix Multiplication Parameter 2
M N K

conv1 3 × 3 × 3 × 64 227 × 227 × 3 44.13 64 12,769 27
fire2 16/64/64 57 × 57 × 64 6.7/6.7/59.9 16/64/64 3249 64/16/144
fire3 16/64/64 57 × 57 × 128 13.3/6.7/59.9 16/64/64 3249 128/16/144
fire4 32/128/128 29 × 29 × 256 6.9/6.9/62 32/128/128 841 128/32/288
fire5 32/128/128 29 × 29 × 256 13.8/6.9/62 32/128/128 841 256/32/288
fire6 48/192/192 15 × 15 × 384 5.5/4.1/37.3 48/192/192 225 256/48/432
fire7 48/192/192 15 × 15 × 384 8.3/4.1/37.3 48/192/19 225 384/48/432
fire8 64/256/256 15 × 15 × 512 11.1/7.4/66.4 64/256/256 225 384/64/576
fire9 64/256/256 15 × 15 × 512 14.7/7.4/68.7 64/256/256 225 512/64/576

conv10 1 × 1 × 512 × 1000 15 × 15 × 512 230.4 1000 225 512
Total 850.06

1 S1/E1/E3 (squeeze1 × 1 and expand1 × 1/3 × 3), 2 M and N are reversed in CONNA.

In this section, computing performance is discussed in terms of computing unit uti-
lization, latency, and throughput. Next, we compare CONNA with state-of-the-art accel-
erators in terms of performance, throughput, and efficiency.

5.1. Computing Unit Utilization of CONNA
Figure 15 depicts the per-layer PE utilization of SqueezeNet v1.1 on all the accelerator

architectures that were compared (SIMD, OS/WS SA, and CONNA). First, the utilization
rate of the CONNA was up to four times higher than that of SIMD.

Figure 15. PE utilization rates of SIMD, OS-SA, WS-SA and CONNA for SqueezeNet v1.1.

SIMD-based accelerators (16 × 16, 64 × 4, 32 × 8, 4 × 64, 8 × 32) were classified according
to the shape of the PE array. In general, for a SIMD accelerator with an X × Y PE array, the
matrix parameter K should be a multiple of Y to be fully utilized. SIMD_16 × 16 employed
a dataflow structure that computed 2D 16 × 16 pixels of an image in parallel [41]. Although
SIMD accelerators demonstrated reasonably decent utilization rates, the conv1 layer,
where the kernel matrix was tall-and-skinny, attained a relatively low utilization rate. This
was because the matrix parameter K was not close to the multiple of Y. For instance, to
compute the matrix multiplications when K is equal to 27 on SIMD_16 × 16, only 84%
(=27/32) of the PEs were utilized. In SIMD_64 × 4, 96% (27/28) of the PEs were utilized to
conduct this matrix multiplication. In contrast, for some layers (e.g., fire3/s1), the utiliza-
tion rate of SIMD_64 × 4 was significantly low owing to the size mismatch. A similar result
was achieved for SIMD_32 × 8. In short, SIMD_32 × 8 and SIMD_64 × 4 were effective

Figure 15. PE utilization rates of SIMD, OS-SA, WS-SA and CONNA for SqueezeNet v1.1.

SIMD-based accelerators (16 × 16, 64 × 4, 32 × 8, 4 × 64, 8 × 32) were classified
according to the shape of the PE array. In general, for a SIMD accelerator with an X × Y PE
array, the matrix parameter K should be a multiple of Y to be fully utilized. SIMD_16 × 16
employed a dataflow structure that computed 2D 16 × 16 pixels of an image in parallel [41].
Although SIMD accelerators demonstrated reasonably decent utilization rates, the conv1
layer, where the kernel matrix was tall-and-skinny, attained a relatively low utilization
rate. This was because the matrix parameter K was not close to the multiple of Y. For
instance, to compute the matrix multiplications when K is equal to 27 on SIMD_16 × 16,
only 84% (=27/32) of the PEs were utilized. In SIMD_64 × 4, 96% (27/28) of the PEs were
utilized to conduct this matrix multiplication. In contrast, for some layers (e.g., fire3/s1),
the utilization rate of SIMD_64 × 4 was significantly low owing to the size mismatch. A
similar result was achieved for SIMD_32 × 8. In short, SIMD_32 × 8 and SIMD_64 × 4
were effective when the kernel matrix was tall-and-skinny, whereas SIMD_4 × 64 and

Electronics 2022, 11, 2373 17 of 23

SIMD_8 × 32 were effective when the kernel matrix was short-and-fat. In the case of SIMD
4 × 64, as it approached the last layer of the neural network, the utilization rate increased.
However, for the first layer, the utilization rate was significantly lower (42%), owing to the
size mismatch.

Overall, the CONNA achieved a higher utilization rate than SIMDs because it was ca-
pable of configuring the PE array to adjust the shape of the computation. In the conv1 layer,
operation mode 3 was activated by multiplying 4 × N activations by N × 64 weights. In this
case, the size of the computation was a multiple of 4 (12,772), and 99.97% (=12,769/12,772)
of the PEs were meaningfully utilized. In the fire7/S1 layer, the utilization rate of CONNA
was 96.98% (=225/232) by multiplying 8 × N activations by N × 32 weights, operation
mode 5. The lowest utilization rate of the CONNA was 93.75% (=225/240) for fire7/S1,
running operation mode 1. SIMDs achieved a low utilization rate because the size of
matrices is small, and the matrix parameter K (384) does not fit well in the multiple of Y in
this layer. In this layer, compared to SIMD-based accelerators, the CONNA outperforms
them by up to 1.56 times.

In general, SA-based accelerators take longer to load data and collect the final output
than SIMDs do [42]. This is mainly due to the increased idle time of the PEs. Generally,
the OS SA propagates weights more often than the WS SA, and the utilization of the OS
SA is lower than that of the WS SA. In addition, in both OS SA and WS SA, relatively low
utilization of PEs is achieved [18]. In fire7/s1, the utilization rate of both OS and WS SA is
lower than that of other layers. This is because it takes more time than the computation to
forward data to PE, resulting in longer idle time. Overall, the CONNA achieves a utilization
rate up to 3.13 times higher utilization rate compared to SA-based accelerators.

5.2. Latency and Throughput of CONNA

To calculate the latency and throughput of the accelerators, the number of clock
cycles required to compute each layer was measured. Figure 16 depicts the number of
computation cycles per layer for SqueezeNet v1.1. The computational cycle was closely
related to the amount of computation required to process each layer. Each layer requires
a large amount of computation. For instance, the fire2/E1 (expand_1 × 1) and fire2/E3
(expand_3 × 3) layers have approximately 6 M and 60 M operations, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 24

when the kernel matrix was tall-and-skinny, whereas SIMD_4 × 64 and SIMD_8 × 32 were
effective when the kernel matrix was short-and-fat. In the case of SIMD 4 × 64, as it ap-
proached the last layer of the neural network, the utilization rate increased. However, for
the first layer, the utilization rate was significantly lower (42%), owing to the size mis-
match.

Overall, the CONNA achieved a higher utilization rate than SIMDs because it was
capable of configuring the PE array to adjust the shape of the computation. In the conv1
layer, operation mode 3 was activated by multiplying 4 × N activations by N × 64 weights.
In this case, the size of the computation was a multiple of 4 (12,772), and 99.97%
(=12,769/12,772) of the PEs were meaningfully utilized. In the fire7/S1 layer, the utilization
rate of CONNA was 96.98% (=225/232) by multiplying 8 × N activations by N × 32 weights,
operation mode 5. The lowest utilization rate of the CONNA was 93.75% (=225/240) for
fire7/S1, running operation mode 1. SIMDs achieved a low utilization rate because the size
of matrices is small, and the matrix parameter K (384) does not fit well in the multiple of
Y in this layer. In this layer, compared to SIMD-based accelerators, the CONNA outper-
forms them by up to 1.56 times.

In general, SA-based accelerators take longer to load data and collect the final output
than SIMDs do [42]. This is mainly due to the increased idle time of the PEs. Generally,
the OS SA propagates weights more often than the WS SA, and the utilization of the OS
SA is lower than that of the WS SA. In addition, in both OS SA and WS SA, relatively low
utilization of PEs is achieved [18]. In fire7/s1, the utilization rate of both OS and WS SA is
lower than that of other layers. This is because it takes more time than the computation to
forward data to PE, resulting in longer idle time. Overall, the CONNA achieves a utiliza-
tion rate up to 3.13 times higher utilization rate compared to SA-based accelerators.

5.2. Latency and Throughput of CONNA
To calculate the latency and throughput of the accelerators, the number of clock cy-

cles required to compute each layer was measured. Figure 16 depicts the number of com-
putation cycles per layer for SqueezeNet v1.1. The computational cycle was closely related
to the amount of computation required to process each layer. Each layer requires a large
amount of computation. For instance, the fire2/E1 (expand_1 × 1) and fire2/E3 (expand_3
× 3) layers have approximately 6 M and 60 M operations, respectively.

Figure 16. Computation cycles of SIMD, OS SA, WS SA, and CONNA on SqueezeNet v1.1.

Although fire2/S1 and fire2/E1 had approximately the same amount of computation,
there was a large gap in the number of computation cycles required to process each layer.
There were some cases where more computation cycles were required, although the

Figure 16. Computation cycles of SIMD, OS SA, WS SA, and CONNA on SqueezeNet v1.1.

Although fire2/S1 and fire2/E1 had approximately the same amount of computation,
there was a large gap in the number of computation cycles required to process each layer.
There were some cases where more computation cycles were required, although the amount
of computation was smaller. Although fire2/S1 required 3% less computation than fire4/E1,
it took 1.74 times more clock cycles in SIMD_16 × 16.

Electronics 2022, 11, 2373 18 of 23

As mentioned earlier, to effectively conduct multiplications in SIMD_16 × 16, the
dimension of matrix multiplication is a multiple of the size of the PE array. However, the
size of the matrix parameter N was 3249, and it was computed as 3264 to fit a multiple
of 16. Therefore, additional computations were required for the remaining 15 elements
(=3264–3249) in fire2/S1. In addition, in the case of fire4/E1, the size of the matrix pa-
rameter N was 841, and the computed size of N was 848 to fit a multiple of 16. There-
fore, additional computations were required for the remaining 7 elements (=848–841).
In the SIMD architecture, the effectiveness of performing matrix multiplications in a
CNN depends on whether the dimensions of the matrices match the structure of the
processing hardware.

On SqueezeNet v1.1, the CONNA required a smaller number of computation cycles
when compared to the SIMD-based accelerators. This is related to computing unit utiliza-
tion. SIMDs perform unnecessary computations to fit the shape of the PE array, which
corresponds to zero padding [35]. Zero padding makes the matrix multiplication shape
the PE array but reduces the computing unit utilization so that it takes more latencies.
However, CONNA can configure the PE array to adjust the matrix shape and can achieve
reduced unnecessary computations. In the conv10 layer, CONNA takes about 501.200 clock
cycles, which is the longest time. Compared to SIMD-based accelerators, it takes up to
1.3 times fewer computation clock cycles.

SA is advantageous from the perspective of data reuse. It loads data once and reuses
it through communication between PEs [17,18]. However, if the shape of the matrix is not
a square shape, the input of SA contains zero values to match the shape of the PE array.
In terms of the number of computation cycles, it often required more clock cycles to pass
the information on feature maps, weights, and partial sums to several PEs. In the conv10
layer, SA required more cycles than all the other accelerators, especially when the matrix
computations in those layers involved matrices with various shapes and dimensions.

The throughput of the accelerator was measured by the number of frames processed
per second (FPS) when the inference was conducted on SqueezeNet v1.1. Table 9 presents
the comparison results in terms of throughput and efficiency. Efficiency was measured in
frames per watt. In the CONNA, the total number of computation cycles was 2,002,956,
and the corresponding throughput was 100, which is up to 1.68 times better than that of the
other accelerators compared. Furthermore, CONNA demonstrated up to 1.67 times better
efficiency than the other SIMDs and SAs.

Table 9. Utilization, cycle, and throughput comparison with SIMD and OS/WS-based accelerators.

Architecture Avg. Utilization Cycles Throughput 1

(FPS)
Efficiency 2

(FPS/W)

SIMD_16 × 16 95% 2,250,587 88.9 1073.02
SIMD_32 × 8 85% 2,625,446 76.2 920.51
SIMD_64 × 4 78% 3,366,203 59.4 718.69
SIMD_4 × 64 82% 2,443,268 81.9 987.70
SIMD_8 × 32 91% 2,462,693 81.2 979.26

OS 52% 3,246,212 61.6 735.0
WS 58% 2,844,490 70.3 839.6

CONNA 98% 2,002,956 100.0 1196.89
1 Number of images can be computed in a second, 2 Throughput per power consumption.

5.3. Comparision with the State-of-the-Art Accelerators

The proposed accelerator, CONNA, was compared with the state-of-the-art accelera-
tors in terms of various design metrics. Because the hardware structures and dataflows of
each accelerator were diverse, it was difficult to compare the performance of the CONNA
with those of the other accelerators. Therefore, we performed the comparisons in terms
of several metrics: achieved computing performance, throughput, implementation cost,
power consumption, silicon area, and multiple efficiencies. The performance efficiency
metric was computed by dividing the throughput metric by the implementation cost. The

Electronics 2022, 11, 2373 19 of 23

power efficiency metric was computed by dividing the throughput by the power consump-
tion (FPS/W), and the area efficiency metric was computed by dividing the throughput
by the silicon area (FPS/mm2). The overall efficiency was estimated by dividing the
throughput by the product of the power consumption and silicon area (FPS/(W*mm2)).

Several platforms were compared: CPU (i3-6100U), GPU (Tesla T4), and well-known
accelerators such as SIMD and SA-based implementation [21,22,34,43]. The results are
summarized in Tables 10 and 11. Both CPU and GPU platforms suffered from low power
efficiency as well as low area efficiency. However, SIMD and SA-based accelerators are rela-
tively more efficient than processors [20,21]. In this section, we compare the performance
of CONNA with SIMD-based accelerators and SA-based accelerators.

Table 10. Efficiency comparison with processors and the SIMD-based accelerators [21,22,24,43].

Metrics CPU GPU KOP3 CONV 1 MAERI CONNA

Architecture i3-6100U Tesla T4 SIMD_26 × 9 SIMD_32 × 32 SIMD_1 × 374 CONNA
SRAM 3 MB 6.5 MB 72 KB 172 KB 80 KB 172 KB

Area (mm2) 99 545 3.98 2.21 6.0 2.36
Power (mW) 1.5 × 105 7 × 105 72 71.61 520 83.55
Tech. (nm) 14 12 65 40 28 65

Freq. (MHz) 2.3 × 103 1.6 × 103 200 100 200 200
MAC Unit

(MUL/ADD) 64/64 2560/2560 234/208 1024/1152 374/373 256/256

Peak Perf.
(GOPS) 2 130.9 1.3 × 105 94.8 156 149.6 102.4

Real Perf.
(GOPS) 3 8.76 2.8 × 103 58.05 51.07 128.7 84.88

Throughput
(FPS) 10.3 3334 68.29 60.08 151.63 100

Power Eff. 0.7 47.63 987.47 838.99 * 291.62 * 1196.89
Area Eff. 0.1 6.12 17.16 27.19 ** 25.27 ** 42.37

Overall Eff. 0.0007 0.009 238.31 379.63 *** 48.6 *** 507.16
1 Maximum SRAM size required is 161 KB, similar size of 172 KB SRAM is used, 2 Theoretical computing perfor-
mance, 3 Achieved computing performance running SqueezeNet v1.1 inference, Scaled-down to 65 nm, CONV
and MAERI are expected to 516.3/112.15 (FPS/mW) *, 16.73/9.72 (FPS/mm2) **, 143.77/7.19 (FPS/(mW*mm2))
***, respectively.

Table 11. Efficiency comparison with the state-of-the-art accelerators [17,18,20,25].

Metrics TPU Eyeriss Gemmini Chain-NN CONNA

Architecture SA (WS) SA (RS) SA (OS) SA (WS) CONNA
SRAM 28 MiB 192 KB 328 KB 352 KB 172 KB

Area (mm2) 331 12.25 1.21 10.69 2.36
Power (mW) 8.6 × 105 278 312.41 567.5 83.55
Tech. (nm) 28 65 16 28 65

Freq. (MHz) 700 200 500 700 200
MAC Unit

(MUL/ADD) 65,536/65,536 168/168 1024/1024 576/576 256/256

Peak Perf. (GOPS) 92 × 104 84 256 806.4 102.4
Real Perf. (GOPS) 14.1 × 104 43.03 54.4 604.43 84.88
Throughput (FPS) 1.6 × 105 50.62 64 755.54 100

Power Eff. 221.9 * 182.01 204.86 * 1331.35 * 1196.89
Area Eff. 501.86 ** 4.13 52.89 ** 70.68 ** 42.37

Overall Eff. 6.69 *** 14.86 169.31 *** 124.54 *** 507.16
Scaled-down to 65 nm, TPU, Gemmini and Chain-NN are expected to 0.47/50.43/573.5 (FPS/mW) *,
0.11/13.02/30.44 (FPS/mm2) **, 0.001/10.26/23.11 (FPS/(mW*mm2)) ***, respectively.

5.3.1. SIMD-Based Accelerators

The SIMD-based accelerator is classified by the number of hardware that performs
a dot-product operation. KOP3 was a SIMD-type accelerator with an optimized hard-

Electronics 2022, 11, 2373 20 of 23

ware structure for the computation of a 3 × 3 convolution kernel [21]. It possessed
26 dot-product computation units, each of which performs 9 multiplications in paral-
lel and combines them. It uses clock gating and enables unnecessary computations and
power consumption. It consumed lower power when compared to the CONNA. However,
it exhibited lower power efficiency and area efficiency than the CONNA. This is because
the hardware was designed to achieve the best performance for 3 × 3 convolution opera-
tions, further resulting in performance degradation when performing 1 × 1 convolution
operations. CONV is an optimized acceleration architecture when the kernel matrix is
high [22]. It consists of a multiplier array and adder trees that combine the multiplication
results for each row. This architecture is similar to that of the SIMD_32 × 32. In the in-
ference process of SqueezeNet v1.1, the computing performance achieved by CONV was
51.07 GOPS, which is only 33% of the peak computing performance. Only a fraction of
the peak computing performance was achieved because the acceleration performance
decreased when the kernel matrices were not tall. Compared to the CONNA, it required a
lower silicon area and lower power consumption. However, the CONNA exhibited a higher
power and area efficiency. MAERI has a special MAC engine that allows data to be for-
warded to the selected interconnections [24]. It has switchable logic and employs a method
increasing the efficiency by forwarding the data to all multipliers and adders according to
the shape and dimension of matrix multiplication. This architecture is similar to that of the
SIMD_1 × 374, which is optimized for combining 374 multiplication results into 1. The
achieved computing performance and throughput are 1.52 and 1.51 times better than that
of the CONNA, respectively. However, it requires a large amount of power consumption
from switchable logic. It also requires more area, and all efficiencies are much lower than
that of the CONNA.

5.3.2. SA-Based Accelerators

The SA-based accelerator performs high computational parallelism by communication
between a large number of PE arrays [17,18,20,25]. It is classified by dataflow: Weight
Stationary (WS), Output Stationary (WS), and Row Stationary (RS). TPU is a WS base SA
accelerator that stores weight in the register at PE and remains stationary to minimize the
movement of the weights [17]. Because TPU is designed for high-performance inference
on cloud platforms, it includes large PE arrays and memory. As shown in Table 10, TPU
has a significantly higher achieved computing performance throughput than that of other
accelerators. However, only 15% of the peak performance is achieved. As mentioned
earlier, the effectiveness of performing matrix multiplications depends on whether the
dimensions of the matrices match the structure of the processing hardware. This implies
that a large PE array can increase the inference performance, but it reduces the efficiency
of the computation. Compared to the CONNA, it requires more silicon-area and power
consumption, which are related to lower efficiencies. Eyeriss is an SA-type accelerator
that employs an efficient dataflow model called Row Stationary (RS) [20]. The RS is a
dataflow model that increases the reusability of feature maps and weights. It is designed to
maximize data reusability by assigning the processing of a 1-D row convolution to each
PE. However, it consumed 3.33 times more power and required up to 5.19 times larger
silicon area than that of the CONNA. A large amount of power was dissipated, and a
large silicon area was consumed by the PE network block, including the clock network
and PE controller hardware logic for gating. In terms of power and area efficiencies, the
CONNA outperformed Eyeriss. Gemmini is a flexible acceleration architecture that adjusts
dataflows depending on the CNN structure [18]. Inside Gemmini, each PE performs a
MAC operation in one cycle using either the WS or OS dataflow. Before feeding data into
the PE array, zero-padding operations must be performed to guarantee that the dimen-
sion of the matrix multiplication is a multiple of the size of the PE array. This operation
incurs significant overhead, leading to an increased number of computation cycles and a
decreased utilization rate of the computing units. It achieved 1.56 times lower throughput
and required 3.74 times more power than the CONNA. In addition, it demonstrated a

Electronics 2022, 11, 2373 21 of 23

5.84 times lower power efficiency. Chain-NN is an implementation that reduces the for-
warding of zero values between PE arrays using a 1D systolic array [25]. In typical com-
munication structures in the OS and WS dataflow, one PE is connected to multiple PEs to
maximize data reuses and MAC utilization. In contrast, in 1D chain architecture, only one
adjacent PE is connected like a chain structure. Chain-NN targets to maximize the comput-
ing performance; it requires more SRAM and logics than other accelerators. However, in
terms of power and area efficiencies, Chain-NN is much better than that of the CONNA.
When compared based on the 65 nm technology, Chain-NN requires 10.52 and 15.77 times
more silicon area and power consumption than CONNA, respectively.

In the overall efficiency that considers all throughput, power consumption, and silicon
area, the CONNA is up to 34.1 times better than the dedicated accelerators that were
compared. In conclusion, the CONNA excels in performing diverse matrix multiplications
compared to other dedicated accelerators and can achieve a high utilization rate of the
computing units, further leading to low computation latencies.

6. Discussion

The CONNA focuses on hardware design to effectively perform various shapes and
dimensions of matrix multiplication, which takes a large portion of CNN applications.
With a negligible amount of hardware cost, the computing performance of the CONNA is
consistently higher regardless of various matrix multiplications. Furthermore, the CONNA
shows a significant power, area, and overall efficiency on SqueezeNet v1.1 against the
existing CNN accelerators, as shown in Section 5.3

Accelerating various matrix multiplication effectively is a challenging task from a
hardware architecture design point of view. The accelerator design complexity and hard-
ware implementation cost become much higher due to additional control logic and memory.
This has resulted in Tables 10 and 11. In addition, it makes an additional latency, which is
related to a reduced throughput. However, CONNA demonstrates a hardware design that
can accelerate various matrix multiplications with high MAC utilization, throughput, and
efficiencies compared to existing accelerators.

It is worth noting that high efficiencies provide by configuring the shape of MAC units
to adjust the shape of the computation. Currently, CONNA does not consider consisting of a
large number of PE arrays, but this can be implemented with an accelerating larger CNN model.
This would enable our design approach to accelerate various matrix multiplication faster.

7. Conclusions

In this study, we presented a neural network accelerator called CONNA with a con-
figurable engine to efficiently perform matrix multiplications with various shapes and
dimensions. Existing studies have employed a computing engine optimized for matrices
of either square or particular shapes and dimensions. Such architectures suffer from in-
efficiency when matrices in the CNN layers have various shapes and dimensions. The
CONNA can maximize the utilization rate of computing units using a novel configurable
engine. Using the proposed configurable computing engine, the shape and dimension of
the matrix multiplication conducted inside the accelerator were configured such that the
utilization rate of the computing units could be maximized. Compared to conventional
accelerators, the CONNA achieved a high utilization rate, further leading to excellent com-
puting performance. Furthermore, in terms of the overall efficiency considering throughput,
power consumption, and silicon area, the CONNA was up to 34.1 times better than the
state-of-the-art accelerators and processors.

Author Contributions: S.-S.P. was responsible for initial conceptualization and writing the draft
manuscript. S.-S.P. and K.-S.C. declared that they have participated in the research and editing of the
manuscript. K.-S.C. read and approved the final manuscript. All authors have read and agreed to the
published version of the manuscript.

Electronics 2022, 11, 2373 22 of 23

Funding: This work was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2022-0-01304,
Development of Self-learnable Mobile Recursive Neural Network Processor Technology).

Acknowledgments: The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (ECCV), Zurich, Switzerland, 6–12 September 2014.
2. Farhadi, A.; Redmon, J. Yolov3: An incremental improvement. In Proceedings of the Computer Vision and Pattern Recognition

(CVPR), Salt Lake City, UT, USA, 18–22 June 2018.
3. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on multi-level feature

pyramid network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019.
4. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and <0.5 MB model size. In Proceedings of the International Conference on Learning Representations (ICLR),
Toulon, France, 24–26 April 2017.

5. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019.

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.

7. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Stockholm, Sweden, 24–28 August 2014.

8. Guo, D.; Zhou, W.; Li, H.; Wang, M. Hierarchical LSTM for sign language translation. In Proceedings of the AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

9. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), Minneapolis, MN, USA, 2–7 June 2019.

10. Ogden, S.S.; Guo, T. Characterizing the deep neural networks inference performance of mobile applications. arXiv 2019,
arXiv:1909.04783.

11. Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In Proceedings of the International Conference on
Artificial Neural Networks (ICANN), Hamburg, Germany, 15–19 September 2014.

12. Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

13. Strobel, K.; Zhu, S.; Chang, R.; Koppula, S. Accurate, low-latency visual perception for autonomous racing: Challenges,
mechanisms, and practical solutions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020.

14. Kim, Y.D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of deep convolutional neural networks for fast and low power
mobile applications. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, PR, USA,
2–4 May 2016.

15. Aguilera, C.A.; Aguilera, C.; Navarro, C.A.; Sappa, A.D. Fast CNN Stereo Depth Estimation through Embedded GPU Devices.
Sensors 2020, 20, 3249. [CrossRef] [PubMed]

16. NVDIA Deep Learning Accelerator. 2021. Available online: https://nvldla.org (accessed on 28 June 2022).
17. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Yoon, D.H. In-datacenter performance analysis of a

tensor processing unit. In Proceedings of the International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada,
24–28 June 2017.

18. Genc, H.; Kim, S.; Amid, A.; Haj-Ali, A.; Iyer, V.; Prakash, P.; Zhao, J.; Grubb, D.; Liew, H.; Mao, H.; et al. Gemmini: Enabling
systematic deep-learning architecture evaluation via full-stack integration. In Proceedings of the Design Automation Conference
(DAC), San Francisco, CA, USA, 7–10 December 2021.

19. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Yang, H. Angel-eye: A complete design flow for mapping CNN onto embedded
FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 35–47. [CrossRef]

20. Chen, Y.-H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. In
Proceedings of the International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016.

21. Yue, J.; Liu, Y.; Yuan, Z.; Wang, Z.; Guo, Q.; Li, J.; Yang, H. A 3.77 TOPS/W convolutional neural network processor with
priority-driven kernel optimization. IEEE Trans. Circuits Syst. 2018, 66, 277–281.

22. Chong, Y.S.; Goh, W.L.; Ong, Y.S.; Nambiar, V.P.; Do, A.T. An Energy-efficient Convolution Unit for Depthwise Separable
Convolutional Neural Networks. In Proceedings of the International Symposium on Circuits and Systems (ISCAS), Virtual,
23–26 May 2021.

http://doi.org/10.3390/s20113249
http://www.ncbi.nlm.nih.gov/pubmed/32517319
https://nvldla.org
http://doi.org/10.1109/TCAD.2017.2705069

Electronics 2022, 11, 2373 23 of 23

23. Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.; Srinivasan, S.; Das, D.; Krishna, T. Sigma: A sparse and irregular gemm accelerator
with flexible interconnects for DNN training. In Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February 2020.

24. Kwon, H.; Samajdar, A.; Krishna, T. Maeri: Enabling flexible dataflow mapping over dnn accelerators via reconfigurable
interconnects. In ACM SIGPLAN Notices; Association for Computing Machinery: New York, NY, USA, 2018; pp. 461–475.

25. Wang, S.; Zhou, D.; Han, X.; Yoshimura, T. Chain-NN: An energy-efficient 1D chain architecture for accelerating deep convolu-
tional neural networks. arXiv 2017, arXiv:1703.01457.

26. Selvam, S.; Ganesan, V.; Kumar, P. Fuseconv: Fully separable convolutions for fast inference on systolic arrays. In Proceedings of
the Design, Automation & Test in Europe Conference & Exhibition (DATE), Virtual, 14–23 March 2022.

27. Anderson, A.; Gregg, D. Optimal DNN primitive selection with partitioned boolean quadratic programming. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (CGO), New York, NY, USA, 24–28 February 2018.

28. Anderson, A.; Vasudevan, A.; Keane, C.; Gregg, D. Low-memory gemm-based convolution algorithms for deep neural networks.
arXiv 2017, arXiv:1709.03395.

29. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, USA, 2–4 November 2016.

30. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Chintala, S. Pytorch: An imperative style, high-performance
deep learning library. arXiv 2019, arXiv:1912.01703.

31. Chen, J.; Xiong, N.; Liang, X.; Tao, D.; Li, S.; Ouyang, K.; Chen, Z. TSM2: Optimizing tall-and-skinny matrix-matrix multiplication
on GPUs. In Proceedings of the ACM International Conference on Supercomputing (ICS), Phoenix, AZ, USA, 26–28 June 2019.

32. Mitra, G.; Johnston, B.; Rendell, A.P.; McCreath, E.; Zhou, J. Use of SIMD vector operations to accelerate application code
performance on low-powered ARM and Intel platforms. In Proceedings of the International Symposium on Parallel & Distributed
Processing (IPDPS), Chicago, IL, USA, 23–27 May 2016.

33. Stephens, N.; Biles, S.; Boettcher, M.; Eapen, J.; Eyole, M.; Gabrielli, G.; Walker, P. The ARM scalable vector extension. IEEE Micro
2018, 37, 26–39. [CrossRef]

34. Lee, W.J.; Shin, Y.; Lee, J.; Kim, J.W.; Nah, J.H.; Jung, S.; Lee, S.; Park, H.S.; Han, T.D. SGRT: A mobile GPU architecture for
real-time ray tracing. In Proceedings of the High-Performance Graphics Conference (HPG), Anaheim, CA, USA, 19–21 July 2013.

35. Kang, H.J. Accelerator-aware pruning for convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 2019, 30,
2093–2103. [CrossRef]

36. Bachrach, J.; Vo, H.; Richards, B.; Lee, Y.; Waterman, A.; Avižienis, R.; Asanović, K. Chisel: Constructing hardware in a scala
embedded language. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 3–7 June 2012.

37. Asanovic, K.; Avizienis, R.; Bachrach, J.; Beamer, S.; Biancolin, D.; Celio, C.; Waterman, A. The Rocket Chip Generator; Tech. Rep.
UCB/EECS-2016-17; EECS Department, University of California: Berkeley, CA, USA, 2016.

38. Balasubramonian, R.; Kahng, A.B.; Muralimanohar, N.; Shafiee, A.; Srinivas, V. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Trans. Archit. Code Optim. (TACO) 2017, 14, 1–25. [CrossRef]

39. Cook, H.; Terpstra, W.; Lee, Y. Diplomatic design patterns: A TileLink case study. In Proceedings of the Workshop on Computer
Architecture Research with RISC-V (CARRV), Boston, MA, USA, 14 October 2017.

40. SiFive U54. Available online: https://www.sifive.com/cores/u54 (accessed on 25 April 2022).
41. Moons, B.; Verhelst, M. An energy-efficient precision-scalable ConvNet processor in 40-nm CMOS. IEEE J. Solid State Circuits

2016, 52, 903–914. [CrossRef]
42. Gonzalezm, A.; Hong, A. A Chipyard Comparison of NVDLA and Gemmini. Berkely, CA, USA, Tech. Rep. EE, 2020, 290-2.

Available online: https://charleshong3.github.io/projects/nvdla_v_gemmini.pdf (accessed on 28 June 2022).
43. Nebullvm. Available online: https://github.com/nebuly-ai/nebullvm (accessed on 25 April 2022).

http://doi.org/10.1109/MM.2017.35
http://doi.org/10.1109/TCSVT.2019.2911674
http://doi.org/10.1145/3085572
https://www.sifive.com/cores/u54
http://doi.org/10.1109/JSSC.2016.2636225
https://charleshong3.github.io/projects/nvdla_v_gemmini.pdf
https://github.com/nebuly-ai/nebullvm

	Introduction
	Background and Related Works
	Convolutional Neural Network
	Matrix Multiplication
	Accelerating CNN on Neural Processing Unit
	Handling Various Shapes and Dimensions of Matrix Multiplication in NPU
	Computing Unit Utilization
	Latency and Throughput

	CONNA Architecture
	Architecture Overview
	Proposed Configurable Matrix Engine
	Convolution Operation inside CONNA

	Hardware Implementation
	CONNA Implmentation
	Integration of CONNA and RISC-V MCU

	Evaluation
	Computing Unit Utilization of CONNA
	Latency and Throughput of CONNA
	Comparision with the State-of-the-Art Accelerators
	SIMD-Based Accelerators
	SA-Based Accelerators

	Discussion
	Conclusions
	References

